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Wir setzen den Spannungstensor des elektromagnetischen Feldes
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wobei F a1a2 den elektromagnetischen Feldstärketensor darstellt, mit dem Tensor
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ist. Diese Gleichung lässt sich vereinfachen zu:
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Suchen wir nun für (3) zentralsymmetrische Lösungen mit

ds2 = −e2αdq(0)2 + e2βdq(1)2 + q(1)2
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dann erhalten wir daraus für ein elektrisches Feld, dass nur eine Radialkomponente F(0)(1) besitzt, die Lösung:
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mit r = q(1) und beliebig wählbaren Konstanten a, b, c. Das Quadrat des elektrischen Feldes lautet damit:
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Suchen wir zusätzlich noch zentralsymmetrische Lösungen aus der Maxwell-Gleichung für das Vakuum, dass
heißt mit

Da2F
a1a2 = 0, (7)

dann erhalten wir daraus für das Quadrat des elektrischen Feldes:

F(0)(1)F
(0)(1) = −f r4−2n (8)

mit einer Konstanten f .
Wir erhalten für das elektrische Feld F(0)(1) aus beiden Gleichungen (3) und (7) eine r2−n-Abhängigkeit, aber
leider verschwindet Gleichung (6) für n = 4, denn sonst würde hier eine r−4-Abhängigkeit für F(0)(1)F

(0)(1)

stehen, was für eine elektrisch geladene Punktladung typisch ist.
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