
Vielweltentaugliche Relativitätstheorie

Thorsten Krechel

1 Einleitung

Wir werden hier relativistische Feldgleichungen kennen lernen, bei dem der gesamte Dimensi-
onsbereich für eine beliebige Dimensionsanzahl ga0

a0
, aus Dimensionsbereichen bestehen kann,

die unabhängig voneinander und orthogonal zueinander existierende abgeschlossene Systeme
darstellen. Diese abgeschlossenen Systeme wollen wir Dimensionszellen nennen, die dadurch
charakterisiert sind, dass die jeweils in einer Dimensionszelle wirkenden Felder, keine Wirkung
auf Dimensionsbereiche außerhalb von dieser Dimensionszelle haben können. Zwischen verschie-
denen Dimensionszellen besteht also keinerlei Wechselwirkung und der Wirkungsbereich der
Felder in einer Dimensionszelle ist nur auf diese Dimensionszelle selbst beschränkt. Um dies
zu erreichen werden wir divergenzfreie Tensoren einführen, die sich jeweils aus einer Variation
herleiten lassen, so dass sich damit Feldgleichungen konstruieren lassen, die divergenzfrei sind,
somit Erhaltungsgrößen darstellen, und aus dem Variationsprinzip folgen.
[Wir benutzen hier die Einsteinsche Summenkonvention, bei der über zwei gleiche Indizes sum-
miert wird, von denen der eine als kovarianter Index unten und der andere als kontravarianter
Index oben steht. Im folgenden bezeichnet Ra1a2a3a4 den Krümmungstensor, Ra1a2 = Ra1b1a2

b1

den Ricci-Tensor, R = Rb1
b1 den Krümmungsskalar und ga1a2 den metrischen Tensor. Ist qa0

eine Koordinate, dann bezeichnet ∂a0 die einfache Ableitung, und Da0 die kovariante Ableitung
nach dieser Koordinate. Für ∂a0∂a1 schreiben wir ∂a0a1 .]
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2 DIVERGENZFREIE TENSOREN 2

2 Divergenzfreie Tensoren

Die hier vorgestellten zweistufigen symmetrischen Tensoren sind divergenzfrei, dass heißt für
einen solchen zweistufigen symmetrischen Tensor T a0b0 ist Db0T a0b0 = 0:

• Metrischer Tensor ga0b0

• Divergenzfreie Tensoren
n

G
a0b0

, die den Krümmungstensor

Ra0a1a2a3 =
1

2
(∂a1a3ga0a2 − ∂a0a3ga1a2 + ∂a0a2ga1a3 − ∂a1a2ga0a3)

− 1

4
gb1b2((∂a2gb1a1 + ∂a1gb1a2 − ∂b1ga1a2)(∂a3gb2a0 + ∂a0gb2a3 − ∂b2ga0a3)

− (∂a3gb1a1 + ∂a1gb1a3 − ∂b1ga1a3)(∂a2gb2a0 + ∂a0gb2a2 − ∂b2ga0a2))

(1)

in n-ter Potenz enthalten:

n

G
a0b0

= − 1

2 n

∣∣∣∣∣∣

ga0b0 · · · ga0b2n

...
. . .

...
ga2nb0 · · · ga2nb2n

∣∣∣∣∣∣

n∏

l =1

1

2
Ra2 l−1a2 lb2 l−1b2 l

(2)

Diese Tensoren verschwinden für die Dimensionsanzahl ga0
a0
≤ 2 n. Für ga0

a0
= 2 n gibt es

dabei noch eine besondere Beziehung zwischen den Skalaren

n

R =

∣∣∣∣∣∣

ga1b1 · · · ga1b2n

...
. . .

...
ga2nb1 · · · ga2nb2n

∣∣∣∣∣∣

n∏

l =1

1

2
Ra2 l−1a2 lb2 l−1b2 l

(3)

und den Tensoren

n

R
a0b0

=
n

G
a0b0

+
1

2 n
ga0b0

n

R, (4)

für die die Beziehungen

n

R
b1

b1 =
n

R (5)

gelten, denn die Tensorn
n

R
a0b0

verschwinden für ga0
a0

< 2 n, und es gilt:

n

R
a0b0

=

{
1

2 n
ga0b0

n

R wenn ga0
a0

= 2 n,

0 wenn ga0
a0

< 2 n
(6)

Die ersten vier Tensoren
1

G
a1a2

,
2

G
a1a2

,
3

G
a1a2

und
4

G
a1a2

ausgeschrieben lauten:

1. Für n = 1 (Einstein-Tensor):

Ga1a2 = Ra1a2 − 1

2
ga1a2R (7)

2. Für n = 2:

2

G
a1a2

=
2

R
a1a2

− 1

4
ga1a2

2

R (8)
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Mit:

2

R
a1a2

= Ra1b1b2b3Ra2
b1b2b3 + R Ra1a2 − 2Ra1 b1Ra2

b1 − 2Ra1b1a2b2Rb1b2 (9)

Dieser Tensor lässt sich auch mit

2

Rb1b2b3b4b5b6b7b8 =

1

3
(Rb1b4b7b8Rb2b3b5b6 −Rb1b4b6b8Rb2b3b5b7 + Rb1b4b6b7Rb2b3b5b8

−Rb1b3b7b8Rb2b4b5b6 + Rb1b3b6b8Rb2b4b5b7 −Rb1b3b6b7Rb2b4b5b8

−Rb1b3b5b8Rb2b4b6b7 + Rb1b4b5b8Rb2b3b6b7 −Rb1b4b5b7Rb2b3b6b8

+ Rb1b4b5b6Rb2b3b7b8 + Rb1b3b5b7Rb2b4b6b8 −Rb1b3b5b6Rb2b4b7b8

+ Rb1b2b7b8Rb3b4b5b6 −Rb1b2b6b8Rb3b4b5b7 + Rb1b2b6b7Rb3b4b5b8

+ Rb1b2b5b8Rb3b4b6b7 −Rb1b2b5b7Rb3b4b6b8 + Rb1b2b5b6Rb3b4b7b8)

(10)

schreiben als:

2

R
a1a2

=
2

R
a1b1b2b3a2

b1b2b3 (11)

3. Für n = 3:

3

G
a1a2

=
3

R
a1a2

− 1

6
ga1a2

3

R (12)

Mit:

3

R
a1a2

= 2
2

R
a1a2

R + Ra1a2(
2

R− 2R2)

− 4(Ra1
b1

2

R
a2b1

+ Ra2
b1

2

R
a1b1

) + 8Ra1
b1R

a2b1R

− 4Ra1b1a2b2
2

Rb1b2 + 4Ra1b1a2b2Rb1b2R− 8Ra1
b1R

a2
b2R

b1b2

+ 8Ra1b1b2b3Ra2b4
b2b5R

b5
b1b3b4 + 2Ra1b1b2b3Ra2

b1b4b5Rb2b3
b4b5

− 4Ra1b1b2b3Ra2b4
b2b3Rb1b4 − 8Ra1b1b2b3Ra2

b1b2b4Rb3
b4

(13)

4. Für n = 4:

4

G
a1a2

=
4

R
a1a2

− 1

8
ga1a2

4

R (14)

Mit:
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4

R
a1a2

= Ra1a2(
3

R− 6R
2

R + 6R3) + 3
2

R
a1a2

(
2

R− 2R2) + 3
3

R
a1a2

R

− 6(
3

R
a1

b1R
a2b1 +

3

R
a2

b1R
a1b1) + 24(

2

R
a1

b1R
a2b1 +

2

R
a2

b1R
a1b1)R

+ 12Ra1
b1R

a2b1
2

R− 36Ra1
b1R

a2b1R2 + 6Ra1b1a2b2Rb1b2(
2

R− 2R2)

− 24(
2

R
a1

b1R
a2

b2 +
2

R
a2

b1R
a1

b2)R
b1b2 − 24Ra1

b1R
a2

b2

2

R
b1b2

− 6Ra1b1a2b2
3

Rb1b2 + 12Ra1b1a2b2
2

Rb1b2R− 12
2

R
a1

b1

2

R
a2b1

− 24Ra1
b1b3b2R

a2b1b4b2
2

R
b3

b4 − 12Ra1
b3b1b2R

a2b4b1b2
2

R
b3

b4

+ 24Ra1
b1b3b2R

a2b1b4b2Rb3
b4R + 12Ra1

b3b1b2R
a2b4b1b2Rb3

b4R

+ 72Ra1
b1R

a2
b2R

b1b2R− 48Ra1
b1R

a2
b2R

b1b3Rb2
b3

− 24(Ra1
b1b2b3R

a2b1b4b5 + Ra2
b1b2b3R

a1b1b4b5)Rb2b6
b4b5R

b3
b6

− 48(Ra1b1
b3b4R

a2b2b3b5 + Ra2b1
b3b4R

a1b2b3b5)Rb1b6b2
b4Rb5

b6

+ 48(Ra1b1b3b4Ra2
b2b3b5 + Ra2b1b3b4Ra1

b2b3b5)Rb1b6Rb4
b2b6b5

+ 24(Ra1
b1b3b4R

a2
b2b5b6 + Ra2

b1b3b4R
a1

b2b5b6)R
b7b1b3b2Rb7

b4b5b6

+ 6Ra1
b1b2b3R

a2b1
b4b5R

b2b3b6b7Rb4b5
b6b7

+ 48Ra1
b1b3b4R

a2b2b3b5Rb1b6b4b7Rb2b6b5b7

− 12Ra1
b1b3b4R

a2b2b5b6Rb3b4
b5b6R

b1
b2

+ 48Ra1b1b3b4Ra2b2b5b6Rb3b5Rb1b6b4b2

+ 24Ra1
b1b3b4R

a2b2b3b5Rb1
b5b6b7Rb2

b4b6b7

+ 24Ra1
b1b2b3R

a2b1b4b5Rb2
b6b5b7Rb4

b6b3b7

− 48Ra1b1b3b4Ra2b2
b3b5Rb1b6b2b7Rb4

b6b5b7

− 48Ra1b1b4b3Ra2b2
b5b6R

b6
b1b7b3Rb2b4

b7b5

+ 24Ra1
b1b2b3R

a2b1
b4b5R

b2b4Rb3b5

+ 48Ra1b1
b3b4R

a2b2b3b5Rb1b2R
b4

b5

(15)

Dieser Tensor lässt sich auch mit

2

R
a1a2a3a4a5a6a7a8

,
2

R
a1a2a3a4a5a6

=
2

R
a1a2a3b1a4a5a6

b1 ,

2

R
a1a2a3a4

=
2

R
a1a2b1a3a4

b1 ,
2

R
a1a2

=
2

R
a1b1a2

b1 ,
2

R =
2

R
b1

b1

schreiben als:

4

R
a1a2

=
2

R
a1b1b2b3b4b5b6b7 2

R
a2

b1b2b3b4b5b6b7 +
2

R
a1a2 2

R

− 4
2

R
a1b1 2

R
a2

b1 − 12
2

R
a1b1a2b2 2

Rb1b2 + 18
2

R
a1b1b2b3 2

R
a2

b1b2b3

+ 18
2

R
a1b1b2a2b3b4 2

Rb1b2b3b4 − 4
2

R
a1b1b2b3a2b4b5b6 2

Rb1b2b3b4b5b6

− 12
2

R
a1b1b2b3b4b5 2

R
a2

b1b2b3b4b5

(16)
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Die Divergenzfreiheit dieser Tensoren lässt sich mithilfe der folgenden Identitäten beweisen:

• Da3ga1a2 = 0

• Da5Ra1a2a3a4 +Da4Ra1a2a5a3 +Da3Ra1a2a4a5 = 0 (Bianchi-Identität)

• Da9

2

Ra1a2a3a4a5a6a7a8 +Da8

2

Ra1a2a3a4a9a5a6a7 +Da7

2

Ra1a2a3a4a8a9a5a6

+Da6

2

Ra1a2a3a4a7a8a9a5 +Da5

2

Ra1a2a3a4a6a7a8a9 = 0

Die letzte Identität lässt sich mithilfe der Bianchi-Identität beweisen.

3 Relativistische Feldgleichung der Gravitation

Der metrische Tensor ergibt sich aus der Variation der invarianten Wirkung:

0

S =

∫
dDq 2

√
g (17)

dDq
√

g stellt hier das invariante Volumenelement eines D = ga0
a0

-dimensionalen Raumes dar,
in der g die Determinante des metrischen Tensors bedeutet. Die Komponenten des metrischen
Tensors ga1a2 stellen die Feldvariablen dar, nach denen variiert wird. Als Variationsergebnis

erhalten wir dann aus δ
0

S, indem alle auftretenden Variationen durch δga1a2 ausgedrückt werden:

δ
0

S =

∫
dDq δ(2

√
g) =

∫
dDq

√
g (−ga1a2) δga1a2 (18)

Der Einstein Tensor Ga1a2 ergibt sich aus der Variation der invarianten Wirkung

1

S =

∫
dDq

√
g R, (19)

woraus sich durch Variation

δ
1

S =

∫
dDq δ(

√
g R) =

∫
dDq

√
g Ga1a2 δga1a2 (20)

ergibt. Im Variationsergebnis (20) für die Wirkung
1

S können keine Ableitungen dritter und
vierter Ordnung des metrischen Tensors ga1a2 auftauchen, weil der Krümmungsskalar R die
Ableitungen zweiter Ordnung linear enthält.

Der divergenzfreie Tensor
2

Ga1a2 ergibt sich aus der Variation der invarianten Wirkung:

2

S =

∫
dDq

1

2

√
g

2

R (21)

Anders als die Wirkung
1

S enthält die Wirkung
2

S die zweiten Ableitungen nicht linear, aber
bei der Ausführung der Variation stellt sich hier heraus, dass sich alle Ableitungen dritter und
vierter Ordnung des metrischen Tensors gegenseitig wegheben, so dass im Variationsergebnis
keine Ableitungen höherer, als der zweiten Ordnung mehr auftauchen. Als Variationsergebnis
ergibt sich daraus:

δ
2

S =

∫
dDq

1

2
δ(
√

g
2

R) =

∫
dDq

√
g

2

Ga1a2 δga1a2 (22)
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Allemein für die Wirkung

k

S =

∫
dDq

√
g

1

k

k

R (23)

ergibt sich als Variationsergebnis:

δ
k

S =

∫
dDq

1

k
δ(
√

g
k

R) =

∫
dDq

√
g

k

Ga1a2 δga1a2 (24)

Damit lässt sich eine Wirkung S mit irgendwelchen Konstanten
k

λ schreiben als

S =
n∑

k=0

k

λ
k

S, (25)

woraus sich durch das Variationsprinzip δS = 0 eine relativistische Feldgleichung der Gravitation
ergibt:

0 = −
0

λ ga0b0 −
n∑

k=1

k

λ

2 k

∣∣∣∣∣∣

ga0b0 · · · ga0b2k

...
. . .

...
ga2kb0 · · · ga2kb2k

∣∣∣∣∣∣

k∏

l = 1

1

2
Ra2 l−1a2 lb2 l−1b2 l

(26)

4 Vielweltenformel

Die in der Feldgleichung (26) enthaltenen Konstanten
k

λ sollen nun so eingeschränkt sein, dass
mehrere Dimensionsbereiche möglich sind, die unabhängig voneinander und orthogonal zueinan-
der existierende abgeschlossene Systeme darstellen, in denen der jeweils zu diesen Dimensionsbe-
reichen zugeordnete metrische Tensor ga1a2 nur von den Koordinaten und Indizes seines eigenen
Dimensionsbereichs abhängt. Diese Dimensionsbereiche wollen wir Dimensionszellen nennen.
Dazu zerlegen wir den metrischen Tensor ga1a2 in zwei Teilbereiche g′a′1a′2

und g′′a′′1a′′2
, die jeweils

nur von den Koordinaten und Indizes des eigenen Dimensionsbereichs abhängen, so dass wir
den metrischen Tensor ga1a2 schreiben können als:

ga1a2(q
a3) = g′a1a2

(q′a
′
3) + g′′a1a2

(q′′a
′′
3 ) =

(
g′a′1a′2

(q′a
′
3) 0

0 g′′a′′1a′′2
(q′′a

′′
3 )

)
(27)

In der Feldgleichung (26) sind dann nur diejenigen Konstanten
k

λ erlaubt, für dass unter dieser
Bedingung diese Feldgleichung konsistent wird. Dazu werden wir hier einen Dimensionsbereich
betrachten, für dass die Dimensionsanzahl ga0

a0
≤ 10 ist, so dass sich die Feldgleichung (26)

wegen (6) zu

0 = −
0

λ ga1a2 +
1

λGa1a2 +
2

λ
2

Ga1a2 +
3

λ
3

Ga1a2 +
4

λ
4

Ga1a2 (28)

reduziert. Im folgenden gehören die einfach gestrichenen Größen zum Dimensionsbereich zu
der auch g′a′1a′2

gehört, und die doppelt gestrichenen Größen zum Dimensionsbereich zu der auch

g′′a′′1a′′2
gehört. Da beide Dimensionsbereiche äquivalent sind, brauchen wir die Feldgleichungen
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nur in einem der beiden Dimensionsbereiche zu untersuchen. Im folgenden wird das der ein-
fach gestrichene Dimensionsbereich sein. Zerlegen wir den metrischen Tensor ga1a2 unter der
Bedingung (27), dann erhalten wir aus der Feldgleichung (28):

0 = −(
0

λ +
1

2

1

λR′′ +
1

4

2

λ
2

R′′ +
1

6

3

λ
3

R′′ +
1

8

4

λ
4

R′′) g′a′1a′2

+ (
1

λ +
2

λR′′ +
3

λ
2

R′′ +
4

λ
3

R′′) G′
a′1a′2

+ (
2

λ + 2
3

λR′′ + 3
4

λ
2

R′′)
2

G′
a′1a′2

+ (
3

λ + 3
4

λR′′)
3

G′
a′1a′2 +

4

λ
4

G′
a′1a′2

Um diese Gleichung konsistent zu machen, müssen wir die Konstanten
0

λ,
1

λ,
2

λ,
3

λ,
4

λ so wählen,
dass sich der Teil abseparieren lässt, der von den doppelt gestrichenen Koordinaten abhängt.
Dies ist aber nur möglich, wenn die Konstanten die Werte

1

λ = µ
0

λ,
2

λ =
1

2
µ2

0

λ,
3

λ =
1

8
µ3

0

λ,
4

λ =
1

48
µ4

0

λ

annehmen, wobei µ eine Konstante ist. Daraus erhalten wir nämlich dann unter Ausnutzung
von (6):

0 = (1 +
1

2
µR′′ +

1

8
µ2

2

R′′ +
1

48
µ3

3

R′′ +
1

384
µ4

4

R′′)

· (−g′a′1a′2
+ µG′

a′1a′2
+

1

2
µ2

2

G′
a′1a′2 +

1

8
µ3

3

G′
a′1a′2 +

1

48
µ4

4

G′
a′1a′2)

Aus der ursprünglichen Feldgleichung erhalten wir somit eine vielweltentaugliche Feldgleichung
für ga0

a0
≤ 10:

0 = −ga1a2 + µGa1a2 +
1

2
µ2

2

Ga1a2 +
1

8
µ3

3

Ga1a2 +
1

48
µ4

4

Ga1a2 (29)

Allgemein für ga0
a0
≤ ∞, dass eine solche Zerlegung des metrischen Tensors erlaubt, lautet die

vielweltentaugliche Feldgleichung:

0 = −ga0b0 −
∞∑

n = 1

∣∣∣∣∣∣

ga0b0 · · · ga0b2 n

...
. . .

...
ga2 nb0 · · · ga2 nb2 n

∣∣∣∣∣∣

n∏

l =1

µ

4 l
Ra2 l−1a2 lb2 l−1b2 l

(30)

Diese Gleichung erlaubt die Existenz von einer beliebigen Anzahl orthogonal existierender Di-
mensionszellen, die sich ja über die Gravitation nicht gegenseitig beeinflussen können. Die Ei-
genschaften dieser Gleichung erinnert an eine Exponentialfunktion, die sich ja durch die Reihe

eα x = 1 +
∞∑

n = 1

n∏

l =1

α x

l

darstellen lässt.
Betrachten wir nun die Wirkung S =

∫
dDq 2

√
gL, mit

L = 1 +
∞∑

n =1

∣∣∣∣∣∣

ga1b1 · · · ga1b2 n

...
. . .

...
ga2 nb1 · · · ga2 nb2 n

∣∣∣∣∣∣

n∏

l = 1

µ

4 l
Ra2 l−1a2 lb2 l−1b2 l

, (31)
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dessen Variation zu der vielweltentauglichen Feldgleichung (30) führt, dann stellen wir fest,
dass die in der Wirkung S stehende invariante Lagrange-Dichte L die selbe Gestalt hat, wie
der Skalar, der sich durch die Vielweltenzerlegung dieser vielweltentauglichen Feldgleichung
abseparieren lässt. Dieser Skalar hat den Charakter einer Exponentialfunktion, so dass er sich
durch die Vielweltenzerlegung zu einem Produkt aus Skalaren der selben Gestalt zerlegen lässt,
von denen jeder Skalar jeweils dem Dimensionsbereich einer Dimensionszelle zugeordnet ist.
Da sich auch das invariante Volumenelement dDq

√
g durch die Vielweltenzerlegung zu einem

Produkt aus invarianten Volumenelementen der selben Gestalt zerlegen lässt, von denen jedes
Volumenelement jeweils dem Dimensionsbereich einer Dimensionszelle zugeordnet ist, lässt sich
somit auch für jede einzelne Dimensionszelle eine Wirkung S zuordnen, die dann nur Größen
enthält, die dem Dimensionsbereich dieser Dimenionszelle zugeordnet sind, und durch dessen
Variation nach den für diese Dimensionszellen zugeordneten metrischen Tensoren ga1a2 , die für
diese Dimensionszellen zugeordneten Feldgleichungen ergeben.


