Vielweltentaugliche Relativitatstheorie

Thorsten Krechel

1 Einleitung

Wir werden hier relativistische Feldgleichungen kennen lernen, bei dem der gesamte Dimensi-
onsbereich fiir eine beliebige Dimensionsanzahl g*°, , aus Dimensionsbereichen bestehen kann,
die unabhéngig voneinander und orthogonal zueinander existierende abgeschlossene Systeme
darstellen. Diese abgeschlossenen Systeme wollen wir Dimensionszellen nennen, die dadurch
charakterisiert sind, dass die jeweils in einer Dimensionszelle wirkenden Felder, keine Wirkung
auf Dimensionsbereiche auflerhalb von dieser Dimensionszelle haben kénnen. Zwischen verschie-
denen Dimensionszellen besteht also keinerlei Wechselwirkung und der Wirkungsbereich der
Felder in einer Dimensionszelle ist nur auf diese Dimensionszelle selbst beschrinkt. Um dies
zu erreichen werden wir divergenzfreie Tensoren einfiihren, die sich jeweils aus einer Variation
herleiten lassen, so dass sich damit Feldgleichungen konstruieren lassen, die divergenzfrei sind,
somit Erhaltungsgrofien darstellen, und aus dem Variationsprinzip folgen.

[Wir benutzen hier die Einsteinsche Summenkonvention, bei der {iber zwei gleiche Indizes sum-
miert wird, von denen der eine als kovarianter Index unten und der andere als kontravarianter
Index oben steht. Im folgenden bezeichnet R, 4,450, den Kriimmungstensor, R, ., = Ra1b1a2b1
den Ricci-Tensor, R = Ry," den Kritmmungsskalar und g, ., den metrischen Tensor. Ist ¢
eine Koordinate, dann bezeichnet d,, die einfache Ableitung, und D, die kovariante Ableitung
nach dieser Koordinate. Fiir 0,,0,, schreiben wir 0,4, ]
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2 Divergenzfreie Tensoren

Die hier vorgestellten zweistufigen symmetrischen Tensoren sind divergenzfrei, dass heifdt fiir
einen solchen zweistufigen symmetrischen Tensor 7 %% ist Dy, 7 %% = (:

e Metrischer Tensor g,

n aobo
e Divergenzfreie Tensoren G | die den Kriimmungstensor

1
Ra0a1a2a3 - 5(8111@39&0&2 - aaoa;zgalaz + aaoanala;a - aa1a2gaoa3)

1
B Zlgblb2((aanglal + atl1gb1a2 N 8b1ga1a2>(aasgb2llo + aaogb2a3 N 8b2gaoa3)
- (8(139121(11 + 8@191)1@3 - ablgalag)(aangzao + 8&091)2@2 - 8[;29@0@2))

in n-ter Potenz enthalten:

aobo . .. aogban
n aobo 1 9 9

=1
= 5 e H §R02171a2zb2171b21 <2)

2 n gaznbo . glIan2n =1

Diese Tensoren verschwinden fiir die Dimensionsanzahl g*°, < 2n. Fiir g%, = 2n gibt es
dabei noch eine besondere Beziehung zwischen den Skalaren

ga1b1 galen

n n 1

R= . H §Ra2l—1a2lb2l—1b2l (3)
ga2nb1 . ga2nb2n 1=1

und den Tensoren

&aobo &aobo 1 b E

_ _— aobo 4
o (4)

fiir die die Beziehungen

n b1

R, =R 6)

n aobo
gelten, denn die Tensorn R verschwinden fiir g*°, < 2n, und es gilt:

n
n aobo 1 _apbo ap
R :{2ng R wenn g*, = 2n, (6)
ag
0 wenn g*° < 2n
1 a1a2  gaiaz gaiaz 4 @102
Die ersten vier Tensoren G |, G, G und G ausgeschrieben lauten:

1. Fiir n = 1 (Einstein-Tensor):

1
Gmag — Ra1a2 . 5 gal(mR (7)

2. Fir n = 2:

9 a1a2 2 a1a2

2
G =R —1g"R (8)
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Mit:
2 al1a

b b
R — Ra1b1b2b3Ra2blb2b3 + R RM% _ 9Rm™ b1 Ra2b1 — 9 Ra1biaz 2Rb1b2

Dieser Tensor lasst sich auch mit

2
Rbl bobsbabsbsbrbs —
1

§<Rb1b4b7bs szb3b5b6 - Rb1b4beb8Rb2b3b5b7 + Rb1b4bsb7szb3b5b8
— Ry babrbs Rbobabsbs T Rbibsbsbs Lbobabsbr — L1bsbebr [ebababsbs
— R, bgbsbs Rbabsbsbr + Lbybybsbg [obobsbsbr — L2bybabsbr Llbobsbsbs
+ Ry babsbe Loobsbrbs T Lybsbsbr Lbobabsbs — Fbibsbsbs Fbababrbs
+ Ry bobrbs Bosbabsvse — Flbibobsbs bsbibsby + Fbibobebr Rbsbibsbs
+ Rb1b2bsbst3b4b6b7 - Rblbzb5b7Rbsb4b6b8 + Rb1b2b5b6Rb3b4b7b8)

schreiben als:

9 aiaz 9 a1bibabzaz
R =R b1bobs
3. Firn = 3:
3 @102 3 a1az 3
G =R — —g""R
Mit:
3 a1ag 2 aija2 2
R =2R R+ R“2(R—2R?)
2 az2by 2 aiby

—4(R", R +R™, R )+8R“, R?"R

2
b1b
_ 4Ralb1a2b2Rb1b2 4 4Ra1b1azb2Rb1b2R — 8R™ by RaQbQR 1b2
b1b2b b b b1b2b. bab
- § R1b1b2bs pas 4b2b5R 5b1b3b4 4 9 Rbib SRa2b1b4b5Rb2b3 4b5

a1b1b2b asb. a1b1b2b a b
— 4 R1010203 paz 4b2b3Rb1b4 — 8 RM010203 I 2b1b2b4Rb3 4

4. Fiur n = 4:
4 a1a2 4 a1G2 1 4
G =R —3 g R

Mit:

(10)

(11)

(12)

(13)

(14)
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4 @102 3 ) 20a1a2 9 3 aiaz
R =R"2(R-6RR+6R*)+3R (R—-2R*)+3R R
34 24

3 a2 9 a2
_ 6<R blRa2b1 +R blRalbl) + 24<R blRa2b1 +R blRalbl)R
2 p
+ 12Ra1blRa2b1R — 36R™,, Re2b1 R2 + 6Ra1bla2b2Rblb2(R _ 2R2)

2 al 2 a 2 b1b2
— 24(R blRa2b2 + R blRalbz)Rble — 24Ralbl RaszR

a1 o a2bq

3 2
N 6Ra1b1a2b2Rb1b2 + 12Ra1b1a2b2Rb1b2R —12R b1R

b3 b3
_ 24Ra1b1b3b2Ra2b1b4bzé by — 12Ra1b3b1b2 Razb4b1b2é by
+ 24Ra1b1b3b2Ra2b1b4b2Rb3b4R + 12Ra1b3b1b2 Ra2b4b1b2Rb3b4R
+ T2R* by RaQbQ RNz R — 48 R™ by R* by Rb1bs pb2 bs
_ 24(Ra1b1b2b3 Ra2b1b4bs 4+ RO b1 babs Ralb1b4b5)Rb2b6b4b5 Rb3b6
_ 48(Ra1b1b3b4Ra2b2b3bs + Ra2b1b3b4Ralbzb3b5)Rb1b6b2b4Rb5be (15)
+ 48(Ra1b1b3b4 Rag bobsbs + Ra2b1b364 Ral b2b365)Rb1b6 Rb4b2b5b5
+ 24(R™ b0y R bbsts + R b1500 R basng) R0 Ry, 10000
+ 6Ra1b1b2b3 Ra2b1 babs Rb2b3beb7 Rb4b5b6b7
L A8 R™ bybsbs Razbzbsbs Rb1b6b4b7Rb2b6b5b7
2R,y RO2b2bs0s Rhabs b1
+ 48Ra1b1b3b4 Ra2bzb5b6 Rb3b5 Rb1b6b4b2
+ 24R™ b1bsby Ra2b2b3b5 Rbl b5b6b7Rb2 babobr
+ 24R™ b1b2bs Ra2b1b4b5 Rb2b6b5b7Rb4b6b3b7
_ 4gRmbibsbigazbe, R R bobsbr
_ 483a1b1b4b3 Ra2b2 bsbe Rb6b1b7b3 Rb2b4b7b5
+ 24Ra1b1b2b3 Ra2b154b5 Rb2b1 Rbsbs
+ 48Ra1b1b3b4Ra2b2b3b5Rblb2Rb4b5

Dieser Tensor lasst sich auch mit

9 @1G2a304a506a7048 o 10203040506 9 ajazagbiasasag

R ) R =R b1

9 A1a2a3a4 2 aijasbiasay 9 a1a2 2 aibias 2 2 b1
R - R R =R . R=R,

schreiben als:

4 0102 9 a1b1b2b3babsbsbr o a2z 2 a1a2 9
R =R R b1bobsbabsbeby T R R
o a1by o az o aibrasbs o 9 a1bibabs 9 a2
—4R R 4, —12R Ry, + 18R R pb90,
o a1bibzazbzbs o o a1b1babzazbabsbs o
+ 18R Ry bobsbs — 4R Ry, 26304506
9 a1b1b2b3babs o a2

- 12R R b1bob3babs

(16)
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Die Divergenzfreiheit dieser Tensoren léasst sich mithilfe der folgenden Identitdten beweisen:
® Da3ga1az =0
® Dy, Ry asasas + Doy Rayasasas + Das Rayazasas = 0 (Bianchi-Identitét)

2 2 2
L DagRa1a2a3a4a5a6a7as + DaSRa1a2a3a4a9a5a6a7 + Da7Ra1a2a3a4a3aga5ag
2 2

+ Dae Ra1a2a3a4a7a3aga5 + Da5Ra1a2a3a4a6a7a8a9 =0

Die letzte Identitat lasst sich mithilfe der Bianchi-Identitat beweisen.

3 Relativistische Feldgleichung der Gravitation

Der metrische Tensor ergibt sich aus der Variation der invarianten Wirkung:

§=/qu2¢§ (17)

dP q/g stellt hier das invariante Volumenelement eines D = ¢g®, -dimensionalen Raumes dar,
in der g die Determinante des metrischen Tensors bedeutet. Die Komponenten des metrischen
Tensors ¢q,q, stellen die Feldvariablen dar, nach denen variiert wird. Als Variationsergebnis

0
erhalten wir dann aus 6.5, indem alle auftretenden Variationen durch §¢g*** ausgedriickt werden:

55 = [a48(25) = [ 4°0y5 (~guen) 5" (18)

Der Einstein Tensor G,,,, ergibt sich aus der Variation der invarianten Wirkung

§= /qu\/gR, (19)

woraus sich durch Variation

1
55 = / g 5(\/GR) = / 0" /G Garen 59 (20)

1
ergibt. Im Variationsergebnis (20) fiir die Wirkung S konnen keine Ableitungen dritter und
vierter Ordnung des metrischen Tensors g,,,, auftauchen, weil der Kriimmungsskalar R die
Ableitungen zweiter Ordnung linear enthélt.

p
Der divergenzfreie Tensor (G,,,, ergibt sich aus der Variation der invarianten Wirkung:

2 1 2

S:/qué\/gR (21)

1 2
Anders als die Wirkung S enthélt die Wirkung S die zweiten Ableitungen nicht linear, aber
bei der Ausfithrung der Variation stellt sich hier heraus, dass sich alle Ableitungen dritter und
vierter Ordnung des metrischen Tensors gegenseitig wegheben, so dass im Variationsergebnis
keine Ableitungen hoherer, als der zweiten Ordnung mehr auftauchen. Als Variationsergebnis
ergibt sich daraus:

2 2 2
5= [agoii = [ o5Gu o (22
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Allemein fiir die Wirkung

k 1k

S = / qu\@E R (23)

ergibt sich als Variationsergebnis:
k 1 k k
68 = / dPq 09 R) = / AP 4/ Gayar 69 (24)
k
Damit lésst sich eine Wirkung S mit irgendwelchen Konstanten A\ schreiben als
k ok
S=> XS, (25)

woraus sich durch das Variationsprinzip 6.5 = 0 eine relativistische Feldgleichung der Gravitation
ergibt:

gaobo .. gaonk

k
0 LIS
0=-Ag obo ﬁ : H Razz 1a21b21—1b2y (26)

k=1 g%kbo - ga2kb2k l_1

4 Vielweltenformel

k
Die in der Feldgleichung (26) enthaltenen Konstanten A sollen nun so eingeschrinkt sein, dass

mehrere Dimensionsbereiche moglich sind, die unabhéngig voneinander und orthogonal zueinan-
der existierende abgeschlossene Systeme darstellen, in denen der jeweils zu diesen Dimensionsbe-
reichen zugeordnete metrische Tensor g,,,, nur von den Koordinaten und Indizes seines eigenen
Dimensionsbereichs abhéngt. Diese Dimensionsbereiche wollen wir Dimensionszellen nennen.
Dazu zerlegen wir den metrischen Tensor g,,q4, in zwei Teilbereiche ¢/, 'l und ¢” aall> die jeweils
nur von den Koordinaten und Indizes des eigenen Dimensionsbereichs abhangen so dass wir
den metrischen Tensor g¢,,q, schreiben konnen als:

// ) raf 0
G a1 (4 ) o

Garaa(4") = Ginar (0%) + Gaaa(4") = ( 0 Guyla"™)

k
In der Feldgleichung (26) sind dann nur diejenigen Konstanten A erlaubt, fiir dass unter dieser
Bedingung diese Feldgleichung konsistent wird. Dazu werden wir hier einen Dimensionsbereich
betrachten, fiir dass die Dimensionsanzahl g, < 10 ist, so dass sich die Feldgleichung (26)
wegen (6) zu

33 4 4

0= Agalaz + )‘ Gayar + )‘ Gamz +AGaya, + AGayay (28>

reduziert. Im folgenden gehdren die einfach gestrichenen Groflen zum Dimensionsbereich zu
der auch 9:1’1 a) gehort, und die doppelt gestrichenen Gréflen zum Dimensionsbereich zu der auch

gg’{a’é gehort. Da beide Dimensionsbereiche dquivalent sind, brauchen wir die Feldgleichungen
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nur in einem der beiden Dimensionsbereiche zu untersuchen. Im folgenden wird das der ein-
fach gestrichene Dimensionsbereich sein. Zerlegen wir den metrischen Tensor ¢,,,, unter der
Bedingung (27), dann erhalten wir aus der Feldgleichung (28):

0= (& + 1iR” + 1;33,, + 1§\R3” + 1/4\}%”) !
B 2 4 6 8 Jaya
2

1 2 3 2 4 3 2 3 4 2
+ AT AR+ AR+ AR") Gl + (A + 2R+ 3AR") G g1

- (f\+3§\R”) 631’ +f\C4¥’
ajag aja;
012 3 4
Um diese Gleichung konsistent zu machen, miissen wir die Konstanten A\, A\, A\, A\, A so wéhlen,
dass sich der Teil abseparieren lasst, der von den doppelt gestrichenen Koordinaten abhéngt.
Dies ist aber nur moglich, wenn die Konstanten die Werte

A=A A= S A A= S A A= = A
_ua_éﬂa_guv_@:u

annehmen, wobei p eine Konstante ist. Daraus erhalten wir ndmlich dann unter Ausnutzung
von (6):

0:(1+EMR//‘FEMQRQ//‘i‘ngRgN‘i‘LMAIéN)
2 8 48 384

'(_1 + el +1 2G2«/,/+1 35///+i 4G4///>
ga’la’2 H alal, 2:“’ ajay 8ILL aal, 48'u ahaly

Aus der urspriinglichen Feldgleichung erhalten wir somit eine vielweltentaugliche Feldgleichung
fir g*, < 10:

1,4

E 2 Gamz (29)

Allgemein fiir g*°, < oo, dass eine solche Zerlegung des metrischen Tensors erlaubt, lautet die
vielweltentaugliche Feldgleichung:

1 52 1 5,3
0 = _9(11(12 + NGGIQQ + 5 N2 GCLlCLQ + g Mg Ga1a2 +

- gaobo - gaobzn .
a H
0=-g obo Z H E Rayi yasibsi1bs (30)

n=1 gaznbo ga2nb2n 1=1

Diese Gleichung erlaubt die Existenz von einer beliebigen Anzahl orthogonal existierender Di-
mensionszellen, die sich ja {iber die Gravitation nicht gegenseitig beeinflussen konnen. Die Ei-
genschaften dieser Gleichung erinnert an eine Exponentialfunktion, die sich ja durch die Reihe

darstellen lasst.
Betrachten wir nun die Wirkung S = [ d”¢2 /g £, mit

n

00 ' . . m
L=1+ Z : . : 4_l Ra21—1a21b2l—1b2l’ (31)

n=1 ga2nb1 . ga2nb2n =1

ga1b1 . ga1b2n
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dessen Variation zu der vielweltentauglichen Feldgleichung (30) fiihrt, dann stellen wir fest,
dass die in der Wirkung S stehende invariante Lagrange-Dichte £ die selbe Gestalt hat, wie
der Skalar, der sich durch die Vielweltenzerlegung dieser vielweltentauglichen Feldgleichung
abseparieren ldsst. Dieser Skalar hat den Charakter einer Exponentialfunktion, so dass er sich
durch die Vielweltenzerlegung zu einem Produkt aus Skalaren der selben Gestalt zerlegen lasst,
von denen jeder Skalar jeweils dem Dimensionsbereich einer Dimensionszelle zugeordnet ist.
Da sich auch das invariante Volumenelement d”q v/9 durch die Vielweltenzerlegung zu einem
Produkt aus invarianten Volumenelementen der selben Gestalt zerlegen lédsst, von denen jedes
Volumenelement jeweils dem Dimensionsbereich einer Dimensionszelle zugeordnet ist, lédsst sich
somit auch fiir jede einzelne Dimensionszelle eine Wirkung S zuordnen, die dann nur Groflen
enthélt, die dem Dimensionsbereich dieser Dimenionszelle zugeordnet sind, und durch dessen
Variation nach den fiir diese Dimensionszellen zugeordneten metrischen Tensoren g,,,,, die fiir
diese Dimensionszellen zugeordneten Feldgleichungen ergeben.



